\(\int \frac {\cosh ^3(c+d x)}{a+b \text {csch}(c+d x)} \, dx\) [29]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 85 \[ \int \frac {\cosh ^3(c+d x)}{a+b \text {csch}(c+d x)} \, dx=-\frac {b \left (a^2+b^2\right ) \log (b+a \sinh (c+d x))}{a^4 d}+\frac {\left (a^2+b^2\right ) \sinh (c+d x)}{a^3 d}-\frac {b \sinh ^2(c+d x)}{2 a^2 d}+\frac {\sinh ^3(c+d x)}{3 a d} \]

[Out]

-b*(a^2+b^2)*ln(b+a*sinh(d*x+c))/a^4/d+(a^2+b^2)*sinh(d*x+c)/a^3/d-1/2*b*sinh(d*x+c)^2/a^2/d+1/3*sinh(d*x+c)^3
/a/d

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {3957, 2916, 12, 786} \[ \int \frac {\cosh ^3(c+d x)}{a+b \text {csch}(c+d x)} \, dx=-\frac {b \sinh ^2(c+d x)}{2 a^2 d}-\frac {b \left (a^2+b^2\right ) \log (a \sinh (c+d x)+b)}{a^4 d}+\frac {\left (a^2+b^2\right ) \sinh (c+d x)}{a^3 d}+\frac {\sinh ^3(c+d x)}{3 a d} \]

[In]

Int[Cosh[c + d*x]^3/(a + b*Csch[c + d*x]),x]

[Out]

-((b*(a^2 + b^2)*Log[b + a*Sinh[c + d*x]])/(a^4*d)) + ((a^2 + b^2)*Sinh[c + d*x])/(a^3*d) - (b*Sinh[c + d*x]^2
)/(2*a^2*d) + Sinh[c + d*x]^3/(3*a*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 786

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegr
and[(d + e*x)^m*(f + g*x)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && IGtQ[p, 0]

Rule 2916

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^m*(c + (d/b)*x)^n*(b^2 - x^2)^((p - 1)/2), x], x
, b*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IntegerQ[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = i \int \frac {\cosh ^3(c+d x) \sinh (c+d x)}{i b+i a \sinh (c+d x)} \, dx \\ & = -\frac {i \text {Subst}\left (\int \frac {x \left (a^2-x^2\right )}{a (i b+x)} \, dx,x,i a \sinh (c+d x)\right )}{a^3 d} \\ & = -\frac {i \text {Subst}\left (\int \frac {x \left (a^2-x^2\right )}{i b+x} \, dx,x,i a \sinh (c+d x)\right )}{a^4 d} \\ & = -\frac {i \text {Subst}\left (\int \left (a^2 \left (1+\frac {b^2}{a^2}\right )-\frac {b \left (a^2+b^2\right )}{b-i x}+i b x-x^2\right ) \, dx,x,i a \sinh (c+d x)\right )}{a^4 d} \\ & = -\frac {b \left (a^2+b^2\right ) \log (b+a \sinh (c+d x))}{a^4 d}+\frac {\left (a^2+b^2\right ) \sinh (c+d x)}{a^3 d}-\frac {b \sinh ^2(c+d x)}{2 a^2 d}+\frac {\sinh ^3(c+d x)}{3 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.88 \[ \int \frac {\cosh ^3(c+d x)}{a+b \text {csch}(c+d x)} \, dx=\frac {-6 b \left (a^2+b^2\right ) \log (b+a \sinh (c+d x))+6 a \left (a^2+b^2\right ) \sinh (c+d x)-3 a^2 b \sinh ^2(c+d x)+2 a^3 \sinh ^3(c+d x)}{6 a^4 d} \]

[In]

Integrate[Cosh[c + d*x]^3/(a + b*Csch[c + d*x]),x]

[Out]

(-6*b*(a^2 + b^2)*Log[b + a*Sinh[c + d*x]] + 6*a*(a^2 + b^2)*Sinh[c + d*x] - 3*a^2*b*Sinh[c + d*x]^2 + 2*a^3*S
inh[c + d*x]^3)/(6*a^4*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(243\) vs. \(2(81)=162\).

Time = 17.86 (sec) , antiderivative size = 244, normalized size of antiderivative = 2.87

method result size
risch \(\frac {b x}{a^{2}}+\frac {b^{3} x}{a^{4}}+\frac {{\mathrm e}^{3 d x +3 c}}{24 d a}-\frac {b \,{\mathrm e}^{2 d x +2 c}}{8 d \,a^{2}}+\frac {3 \,{\mathrm e}^{d x +c}}{8 a d}+\frac {{\mathrm e}^{d x +c} b^{2}}{2 a^{3} d}-\frac {3 \,{\mathrm e}^{-d x -c}}{8 a d}-\frac {{\mathrm e}^{-d x -c} b^{2}}{2 a^{3} d}-\frac {b \,{\mathrm e}^{-2 d x -2 c}}{8 d \,a^{2}}-\frac {{\mathrm e}^{-3 d x -3 c}}{24 d a}+\frac {2 b c}{d \,a^{2}}+\frac {2 b^{3} c}{d \,a^{4}}-\frac {b \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 b \,{\mathrm e}^{d x +c}}{a}-1\right )}{d \,a^{2}}-\frac {b^{3} \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 b \,{\mathrm e}^{d x +c}}{a}-1\right )}{d \,a^{4}}\) \(244\)
derivativedivides \(\frac {-\frac {1}{3 a \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}-\frac {-a +b}{2 a^{2} \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {2 a^{2}-a b +2 b^{2}}{2 a^{3} \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+\frac {\left (a^{2}+b^{2}\right ) b \ln \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{4}}+\frac {2 b \left (-\frac {a^{2}}{2}-\frac {b^{2}}{2}\right ) \ln \left (-\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) a +b \right )}{a^{4}}-\frac {1}{3 a \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {a +b}{2 a^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {2 a^{2}+a b +2 b^{2}}{2 a^{3} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (a^{2}+b^{2}\right ) b \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{4}}}{d}\) \(245\)
default \(\frac {-\frac {1}{3 a \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}-\frac {-a +b}{2 a^{2} \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {2 a^{2}-a b +2 b^{2}}{2 a^{3} \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+\frac {\left (a^{2}+b^{2}\right ) b \ln \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{4}}+\frac {2 b \left (-\frac {a^{2}}{2}-\frac {b^{2}}{2}\right ) \ln \left (-\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) a +b \right )}{a^{4}}-\frac {1}{3 a \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {a +b}{2 a^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {2 a^{2}+a b +2 b^{2}}{2 a^{3} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (a^{2}+b^{2}\right ) b \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{4}}}{d}\) \(245\)

[In]

int(cosh(d*x+c)^3/(a+b*csch(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

b*x/a^2+1/a^4*b^3*x+1/24/d/a*exp(3*d*x+3*c)-1/8*b/d/a^2*exp(2*d*x+2*c)+3/8/a/d*exp(d*x+c)+1/2/a^3/d*exp(d*x+c)
*b^2-3/8/a/d*exp(-d*x-c)-1/2/a^3/d*exp(-d*x-c)*b^2-1/8*b/d/a^2*exp(-2*d*x-2*c)-1/24/d/a*exp(-3*d*x-3*c)+2*b/d/
a^2*c+2*b^3/d/a^4*c-b/d/a^2*ln(exp(2*d*x+2*c)+2*b/a*exp(d*x+c)-1)-b^3/d/a^4*ln(exp(2*d*x+2*c)+2*b/a*exp(d*x+c)
-1)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 652 vs. \(2 (81) = 162\).

Time = 0.27 (sec) , antiderivative size = 652, normalized size of antiderivative = 7.67 \[ \int \frac {\cosh ^3(c+d x)}{a+b \text {csch}(c+d x)} \, dx=\frac {a^{3} \cosh \left (d x + c\right )^{6} + a^{3} \sinh \left (d x + c\right )^{6} - 3 \, a^{2} b \cosh \left (d x + c\right )^{5} + 24 \, {\left (a^{2} b + b^{3}\right )} d x \cosh \left (d x + c\right )^{3} + 3 \, {\left (2 \, a^{3} \cosh \left (d x + c\right ) - a^{2} b\right )} \sinh \left (d x + c\right )^{5} + 3 \, {\left (3 \, a^{3} + 4 \, a b^{2}\right )} \cosh \left (d x + c\right )^{4} + 3 \, {\left (5 \, a^{3} \cosh \left (d x + c\right )^{2} - 5 \, a^{2} b \cosh \left (d x + c\right ) + 3 \, a^{3} + 4 \, a b^{2}\right )} \sinh \left (d x + c\right )^{4} - 3 \, a^{2} b \cosh \left (d x + c\right ) + 2 \, {\left (10 \, a^{3} \cosh \left (d x + c\right )^{3} - 15 \, a^{2} b \cosh \left (d x + c\right )^{2} + 12 \, {\left (a^{2} b + b^{3}\right )} d x + 6 \, {\left (3 \, a^{3} + 4 \, a b^{2}\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )^{3} - a^{3} - 3 \, {\left (3 \, a^{3} + 4 \, a b^{2}\right )} \cosh \left (d x + c\right )^{2} + 3 \, {\left (5 \, a^{3} \cosh \left (d x + c\right )^{4} - 10 \, a^{2} b \cosh \left (d x + c\right )^{3} + 24 \, {\left (a^{2} b + b^{3}\right )} d x \cosh \left (d x + c\right ) - 3 \, a^{3} - 4 \, a b^{2} + 6 \, {\left (3 \, a^{3} + 4 \, a b^{2}\right )} \cosh \left (d x + c\right )^{2}\right )} \sinh \left (d x + c\right )^{2} - 24 \, {\left ({\left (a^{2} b + b^{3}\right )} \cosh \left (d x + c\right )^{3} + 3 \, {\left (a^{2} b + b^{3}\right )} \cosh \left (d x + c\right )^{2} \sinh \left (d x + c\right ) + 3 \, {\left (a^{2} b + b^{3}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + {\left (a^{2} b + b^{3}\right )} \sinh \left (d x + c\right )^{3}\right )} \log \left (\frac {2 \, {\left (a \sinh \left (d x + c\right ) + b\right )}}{\cosh \left (d x + c\right ) - \sinh \left (d x + c\right )}\right ) + 3 \, {\left (2 \, a^{3} \cosh \left (d x + c\right )^{5} - 5 \, a^{2} b \cosh \left (d x + c\right )^{4} + 24 \, {\left (a^{2} b + b^{3}\right )} d x \cosh \left (d x + c\right )^{2} + 4 \, {\left (3 \, a^{3} + 4 \, a b^{2}\right )} \cosh \left (d x + c\right )^{3} - a^{2} b - 2 \, {\left (3 \, a^{3} + 4 \, a b^{2}\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )}{24 \, {\left (a^{4} d \cosh \left (d x + c\right )^{3} + 3 \, a^{4} d \cosh \left (d x + c\right )^{2} \sinh \left (d x + c\right ) + 3 \, a^{4} d \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + a^{4} d \sinh \left (d x + c\right )^{3}\right )}} \]

[In]

integrate(cosh(d*x+c)^3/(a+b*csch(d*x+c)),x, algorithm="fricas")

[Out]

1/24*(a^3*cosh(d*x + c)^6 + a^3*sinh(d*x + c)^6 - 3*a^2*b*cosh(d*x + c)^5 + 24*(a^2*b + b^3)*d*x*cosh(d*x + c)
^3 + 3*(2*a^3*cosh(d*x + c) - a^2*b)*sinh(d*x + c)^5 + 3*(3*a^3 + 4*a*b^2)*cosh(d*x + c)^4 + 3*(5*a^3*cosh(d*x
 + c)^2 - 5*a^2*b*cosh(d*x + c) + 3*a^3 + 4*a*b^2)*sinh(d*x + c)^4 - 3*a^2*b*cosh(d*x + c) + 2*(10*a^3*cosh(d*
x + c)^3 - 15*a^2*b*cosh(d*x + c)^2 + 12*(a^2*b + b^3)*d*x + 6*(3*a^3 + 4*a*b^2)*cosh(d*x + c))*sinh(d*x + c)^
3 - a^3 - 3*(3*a^3 + 4*a*b^2)*cosh(d*x + c)^2 + 3*(5*a^3*cosh(d*x + c)^4 - 10*a^2*b*cosh(d*x + c)^3 + 24*(a^2*
b + b^3)*d*x*cosh(d*x + c) - 3*a^3 - 4*a*b^2 + 6*(3*a^3 + 4*a*b^2)*cosh(d*x + c)^2)*sinh(d*x + c)^2 - 24*((a^2
*b + b^3)*cosh(d*x + c)^3 + 3*(a^2*b + b^3)*cosh(d*x + c)^2*sinh(d*x + c) + 3*(a^2*b + b^3)*cosh(d*x + c)*sinh
(d*x + c)^2 + (a^2*b + b^3)*sinh(d*x + c)^3)*log(2*(a*sinh(d*x + c) + b)/(cosh(d*x + c) - sinh(d*x + c))) + 3*
(2*a^3*cosh(d*x + c)^5 - 5*a^2*b*cosh(d*x + c)^4 + 24*(a^2*b + b^3)*d*x*cosh(d*x + c)^2 + 4*(3*a^3 + 4*a*b^2)*
cosh(d*x + c)^3 - a^2*b - 2*(3*a^3 + 4*a*b^2)*cosh(d*x + c))*sinh(d*x + c))/(a^4*d*cosh(d*x + c)^3 + 3*a^4*d*c
osh(d*x + c)^2*sinh(d*x + c) + 3*a^4*d*cosh(d*x + c)*sinh(d*x + c)^2 + a^4*d*sinh(d*x + c)^3)

Sympy [F]

\[ \int \frac {\cosh ^3(c+d x)}{a+b \text {csch}(c+d x)} \, dx=\int \frac {\cosh ^{3}{\left (c + d x \right )}}{a + b \operatorname {csch}{\left (c + d x \right )}}\, dx \]

[In]

integrate(cosh(d*x+c)**3/(a+b*csch(d*x+c)),x)

[Out]

Integral(cosh(c + d*x)**3/(a + b*csch(c + d*x)), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 183 vs. \(2 (81) = 162\).

Time = 0.22 (sec) , antiderivative size = 183, normalized size of antiderivative = 2.15 \[ \int \frac {\cosh ^3(c+d x)}{a+b \text {csch}(c+d x)} \, dx=-\frac {{\left (3 \, a b e^{\left (-d x - c\right )} - a^{2} - 3 \, {\left (3 \, a^{2} + 4 \, b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )}\right )} e^{\left (3 \, d x + 3 \, c\right )}}{24 \, a^{3} d} - \frac {{\left (a^{2} b + b^{3}\right )} {\left (d x + c\right )}}{a^{4} d} - \frac {3 \, a b e^{\left (-2 \, d x - 2 \, c\right )} + a^{2} e^{\left (-3 \, d x - 3 \, c\right )} + 3 \, {\left (3 \, a^{2} + 4 \, b^{2}\right )} e^{\left (-d x - c\right )}}{24 \, a^{3} d} - \frac {{\left (a^{2} b + b^{3}\right )} \log \left (-2 \, b e^{\left (-d x - c\right )} + a e^{\left (-2 \, d x - 2 \, c\right )} - a\right )}{a^{4} d} \]

[In]

integrate(cosh(d*x+c)^3/(a+b*csch(d*x+c)),x, algorithm="maxima")

[Out]

-1/24*(3*a*b*e^(-d*x - c) - a^2 - 3*(3*a^2 + 4*b^2)*e^(-2*d*x - 2*c))*e^(3*d*x + 3*c)/(a^3*d) - (a^2*b + b^3)*
(d*x + c)/(a^4*d) - 1/24*(3*a*b*e^(-2*d*x - 2*c) + a^2*e^(-3*d*x - 3*c) + 3*(3*a^2 + 4*b^2)*e^(-d*x - c))/(a^3
*d) - (a^2*b + b^3)*log(-2*b*e^(-d*x - c) + a*e^(-2*d*x - 2*c) - a)/(a^4*d)

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.71 \[ \int \frac {\cosh ^3(c+d x)}{a+b \text {csch}(c+d x)} \, dx=\frac {\frac {a^{2} {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{3} - 3 \, a b {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{2} + 12 \, a^{2} {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )} + 12 \, b^{2} {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}}{a^{3}} - \frac {24 \, {\left (a^{2} b + b^{3}\right )} \log \left ({\left | a {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )} + 2 \, b \right |}\right )}{a^{4}}}{24 \, d} \]

[In]

integrate(cosh(d*x+c)^3/(a+b*csch(d*x+c)),x, algorithm="giac")

[Out]

1/24*((a^2*(e^(d*x + c) - e^(-d*x - c))^3 - 3*a*b*(e^(d*x + c) - e^(-d*x - c))^2 + 12*a^2*(e^(d*x + c) - e^(-d
*x - c)) + 12*b^2*(e^(d*x + c) - e^(-d*x - c)))/a^3 - 24*(a^2*b + b^3)*log(abs(a*(e^(d*x + c) - e^(-d*x - c))
+ 2*b))/a^4)/d

Mupad [B] (verification not implemented)

Time = 2.47 (sec) , antiderivative size = 180, normalized size of antiderivative = 2.12 \[ \int \frac {\cosh ^3(c+d x)}{a+b \text {csch}(c+d x)} \, dx=\frac {x\,\left (a^2\,b+b^3\right )}{a^4}-\frac {{\mathrm {e}}^{-3\,c-3\,d\,x}}{24\,a\,d}+\frac {{\mathrm {e}}^{3\,c+3\,d\,x}}{24\,a\,d}-\frac {b\,{\mathrm {e}}^{-2\,c-2\,d\,x}}{8\,a^2\,d}-\frac {b\,{\mathrm {e}}^{2\,c+2\,d\,x}}{8\,a^2\,d}-\frac {{\mathrm {e}}^{-c-d\,x}\,\left (3\,a^2+4\,b^2\right )}{8\,a^3\,d}-\frac {\ln \left (2\,b\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c-a+a\,{\mathrm {e}}^{2\,c}\,{\mathrm {e}}^{2\,d\,x}\right )\,\left (a^2\,b+b^3\right )}{a^4\,d}+\frac {{\mathrm {e}}^{c+d\,x}\,\left (3\,a^2+4\,b^2\right )}{8\,a^3\,d} \]

[In]

int(cosh(c + d*x)^3/(a + b/sinh(c + d*x)),x)

[Out]

(x*(a^2*b + b^3))/a^4 - exp(- 3*c - 3*d*x)/(24*a*d) + exp(3*c + 3*d*x)/(24*a*d) - (b*exp(- 2*c - 2*d*x))/(8*a^
2*d) - (b*exp(2*c + 2*d*x))/(8*a^2*d) - (exp(- c - d*x)*(3*a^2 + 4*b^2))/(8*a^3*d) - (log(2*b*exp(d*x)*exp(c)
- a + a*exp(2*c)*exp(2*d*x))*(a^2*b + b^3))/(a^4*d) + (exp(c + d*x)*(3*a^2 + 4*b^2))/(8*a^3*d)